上海康朗生物科技有限公司 品牌商

10 年

手机商铺

商家活跃:
产品热度:
自营

KALANG/康朗生物

原辅料包材/试剂/技术服务/细胞库 / 细胞培养

已认证
品牌介绍
上海康朗生物科技有限公司是一家集研发、生产、销售、服务于一体的一家高科技生物公司,专营基因、蛋白、抗体、Elisa 试剂盒、细胞生物学,分子生物学等高生物产品。总部位于上海,并在北京、广东,江西,吉林等全国 30 多个省市设有分公司和代理机构。涉及的产品被中国科学院、清华、北大、复旦,上海交大,复旦医学院,上海中医药大学,华东师范大学,第二军医大学,曙光医院,浦东新区人民医院等知名科研院所广泛使用,可靠而稳定的质量和完善的售后服务确立了良好的 KALANG 品牌形象。公司秉承「以客户为中心、以产品为保障、以诚信为基础、以创新为宗旨」的发展理念,拥有专业的研发和质量检测团队以及先进的仓储和物流系统。KALANG 品牌已经得到全国科研工作者的认可,成为广大经销商推崇的名牌产品。 公司拥有一批专业的博士、硕士研发人员,专注于生物产品的不断完善和创新。产品覆盖面广,品质可靠。先后开发了涵盖分子生物学、细胞生物学、免疫学、生物医学等领域的多种试剂及试剂盒。同时,KALANG 公司提供各种常规生化试剂,库存常备产品多达 3000 多种,可随时为广大科研工作者提供各类专业试剂。在质量方面,我们的技术保证了我们产品质量,高生产效率,高纯度的产品和超强的生物活性,同时又具有竞争力的价格。 KALANG 谨记公司信念:质量高于一切。所有研发的产品都设有严谨的生产流程,科学的质量检测方法和成熟的质量检测程序,我们恪守对每一位用户的承诺:用专业的态度做专业的品牌。同时,公司组建了一支专业的技术服务队伍,能够为科研工作者提供专业的技术服务。每一位购买 KALANG 产品的用户都能够得到专业的咨询和售后服务。 康朗生物公司坚持与国际接轨,注重和国际先进企业的合作与交流,目前已经和 Sigma、Axygen、Merck、Roche、Amresco、Millipore、Whatman、Corning、Fluka、Abcam,Serva、Pharmacia、eBioscience,Applichem、Acros 以及 Dragon 等著名企业结成紧密的合作伙伴关系,并提供产品代理、市场咨询等多项服务。公司将一如既往与世界更多知名品牌合作,为广大生物科研工作者提供优质、专业的服务。公司理念:整合你我资源,服务生命科学 "。KALANG 公司期待与各同行精诚合作,为广大科研工作者提供更加优质的
品牌商

上海康朗生物科技有限公司

入驻年限:10 年

  • 联系人:

    蔡盼

  • 所在地区:

    上海 闵行区

  • 业务范围:

    细胞库 / 细胞培养、试剂、原辅料包材、技术服务

  • 经营模式:

    生产厂商 经销商

在线沟通
推荐产品

公司新闻/正文

细胞百科之神经元细胞

人阅读 发布时间:2023-07-28 14:51

神经元细胞

英文名称:neuron

分类:突起分为树突和轴

构成:复层扁平上皮

研究史:19世纪初

功能:接受刺激,产生兴奋并传导兴奋

2023072802395298067 

 

神经元细胞指有突起的细胞 ,它由细胞体和细胞突起构成。细胞体位于脑、脊髓和神经节中,细胞突起可延伸至全身各器官和组织中。细胞体是细胞含核的部分,其形状大小有很大差别,直径约4~120微米。核大而圆,位于细胞中央,染色质少,核仁明显。细胞质内有斑块状的核外染色质(旧称尼尔小体),还有许多神经元纤维。细胞突起是由细胞体延伸出来的细长部分,又可分为树突和轴突。每个神经元可以有一或多个树突,可以接受刺激并将兴奋传入细胞体。每个神经元只有一个轴突,可以把兴奋从胞体传送到另一个神经元或其他组织,如肌肉或腺体。

中文名称 神经元细胞 英文名称 neuron
分类

突起分为树突和轴

构成 复层扁平上皮
研究史 19世纪初 功能 接受刺激,产生兴奋并传导兴奋

什么是神经元细胞

神经元即神经元细胞(neuron),是神经系统最基本的结构和功能单位。分为细胞体和突起两部分。细胞体由细胞核、细胞膜、细胞质组成,具有联络和整合输入信息并传出信息的作用。突起有树突和轴突两种。树突短而分枝多,直接由细胞体扩张突出,形成树枝状,其作用是接受其他神经元轴突传来的冲动并传给细胞体。轴突长而分枝少,为粗细均匀的细长突起,常起于轴丘 [2] ,其作用是接受外来刺激,再由细胞体传出。轴突除分出侧枝外,其末端形成树枝样的神经末梢。末梢分布于某些组织器官内,形成各种神经末梢装置。感觉神经末梢形成各种感受器;运动神经末梢分布于骨骼肌肉,形成Sport ultimate。

神经元细胞说明

人的大脑不同于身体的任何器官,因为出生后,它还没有发育完全。它会在出生后的最初几个月或几年中,随着他的经历和外界刺激,继续发育。出生时人会有数以千亿计的脑细胞,当他们链接起来(也就是形成树突),才可以传导信息。如果这些神经元没有被链接,是会渐渐消失的。所以,大脑的生长,大部分原因是树突数量和密度增加的结果。树突在大脑中是负责接受信息的角色,从出生到4岁前,树突的密集程度明显加大,树突越多说明接受信息的能力越强,人也就越聪明。

神经元细胞结构

神经元的胞体(soma)在于脑和脊髓的灰质及神经节内,其形态各异,常见的形态为星形、锥体形、梨形和圆球形状等。胞体大小不一,直径在5~150μm之间。胞体是神经元的代谢和营养中心。

胞体的结构与一般细胞相似,有核仁、细胞膜、细胞质和细胞核。

1)细胞膜

胞体的胞膜和突起表面的膜,是连续完整的细胞膜。除突触部位的胞膜有特优的结构外,大部分胞膜为单位膜结构。神经细胞膜的特点是一个敏感而易兴奋的膜。在膜上有各种受体(receptor)和离子通道(ionic chanel),二者各由不同的膜蛋白所构成。形成突触部分的细胞膜增厚。膜上受体可与相应的化学物质神经递质结合。当受体与乙酰胆碱递质或γ-aminobutyric acid transmitter结合时,膜的离子通透性及膜内外电位差发生改变,胞膜产生相应的生理活动:兴奋或抑制。

2)细胞核

多位于神经细胞体中央,大而圆,异染色质少,多位于核膜内侧,常染色质多,散在于核的中部,故着色浅,核仁1~2个,大而明显。细胞变性时,核多移向周边而偏位。

3)细胞质

位于核的周围,又称核周体(perikaryon)其中含有发达的高尔基复合体、滑面内质网,丰富的线粒体、尼氏体及神经原纤维,还含有溶酶体、脂褐素等结构。具有分泌功能的神经元,胞质内还含有分泌颗粒,如位于下丘脑的一些神经元。

a.尼氏体(Nissl body)

尼氏体又称嗜染质(chromophil substance),是胞质内的一种嗜碱性物质,在一般染色中岛被碱性染料所染色,多呈斑块状或颗粒状。它分布在核周体和树突内,而轴突起始段的轴丘和轴突内均无。依神经元的类型和不同生理状态,尼氏体的数量、形状和分布也有所差别。典型的如脊髓前角运动神经元,尼氏体数量最多,呈斑块状,分散于神经原纤维之间,有如虎皮样花斑,故又称虎斑小体(tigroid body)。而在脊神经节神经元的胞质内,尼氏体呈颗粒状,散在分布。 电镜下,尼氏体是由许多发达的平行排列前粗面内质网及其间的游离核糖体组成。神经活动所儒的大量蛋白质主要在尼氏体合成,再流向核内、线粒体和高尔基复合体。当神经元损伤或中毒时,均能引起尼氏体减少,乃至消失。若损伤恢复除去有害因素后,尼氏体又可恢复。因此,尼氏体的形态结构可作为判定神经元功能状态的一种标志。

b.神经原纤维(neurofibril)

在神经细胞质内,存在着直径约为2~3μm的丝状纤维结构,在银染的切片体本可清晰地显示出呈棕黑色的丝状结构,此即为神经原纤维,在核周体内交织成网,并向树突和轴突延伸,可达到突起的未消部位。在电镜下观察,神经原纤维是由神经丝甜神经微管集聚成束所构成。

神经丝(neurofilament)或称神经细丝,是直径约为10nm细长的管状结构,是中间丝的一种,但与 其他细胞内的中间丝有所不同。在电镜高倍放大观察。可见神经细丝是极微细的管状结构,中间透明为管腔,管壁厚为3nm,其长度特长,多集聚成束。分散在胞质内,也延伸到神经元的突起中。神经丝的生理功能是参与神经元内的代谢产物和离子运输流动的通路。

神经微管(neurotubule)是直径约25nm的细而长的圆形细管,管壁厚为5nm,可延伸到神经元的突起中,在胞质内与神经丝配列成束,交织成网。其生理功能主要参与胞质内的物质转运活动,接近微管表面的各种物质流速最大,微管的表面有动力蛋白(dynein),它本身具有ATP酶的作用,在ATP存在状态下,可使微管滑动,从而使微管具有运输功能。此外,还有较短而分散的微丝。微丝(microfilament)是最细的丝状结构,直径约5nm,长短不等,集聚成束,交织成网,广泛的分布在神经元的胞质和突起内,其主要功能具有收缩作用,适应神经元生理活动的形态改变。神经丝、微管、微丝,这三种纤维,构成神经元的细胞骨架(cytoskeleton),参与物质运输,在光镜下所显示仅是神经丝和神经微管形成的神经原纤维。 其生理功能主要参与胞质内的物质转运活动,接近微管表面的各种物质流速最大,微管的表面有动力蛋白(dynein),它本身具有ATP酶的作用,在ATP存在状态下,可使微管滑动,从而使微管具有运输功能。此外,还有较短而分散的微丝。

微丝(microfilament)是最细的丝状结构,直径约5nm,长短不等,集聚成束,交织成网,广泛的分布在神经元的胞质和突起内,其主要功能具有收缩作用,适应神经元生理活动的形态改变。神经丝、微管、微丝,这三种纤维,构成神经元的细胞骨架(cytoskeleton),参与物质运输,在光镜下所显示仅是神经丝和神经微管形成的神经原纤维。

c.脂褐素(lipofuscin)

常位于大型神经无核周体的一侧,呈棕黄色颗粒状,随年龄增长而增多,经电镜和组织化学证实为次级溶酶体形成的残余体(residual body), 其内容物为溶酶体消化时残留的物质,多为异物、脂滴或退变的细胞器。 某些神经元,如下丘脑,具有内分泌功能的分泌神经元(secretoryneuron),脑体内含直径100~300nm的分泌颗粒,颗粒内含肽类激素(如加压素、催产素等)。

神经元细胞组成结构

神经元的突起是神经元胞体的延伸部分,由于形态结构和功能的不同,可分为树突和轴突。

神经元细胞的结构图

树突

树突(dendrite)是从胞体发出的一至多个突起,呈放射状。胞体起始部分较粗,经反复分支而变细,形如树枝状。树突的结构与脑体相似,胞质内含有尼氏体,线粒体和平行排列的神经原纤维等,但无高尔基复合体。在特殊银染标本上,树突表面可见许多棘状突起,长约0.5~1.0μm,粗约0.5~2.0μm,称树突棘(dendritic spine),是形成突触的部位。一般电镜下,树突棘内含有数个扁平的囊泡称棘器(spine apparatus)。树突的分支和树突棘可扩大神经元接受刺激的表面积。树突具有接受刺激并将冲动传入细胞体的功能。

轴突

轴突(axon)每个神经元只有一根胞体发出轴突的细胞 质部位多呈贺锥形,称轴丘(axon hillock),其中没有尼氏体,主要有神经原纤维分布。轴突自胞体伸出后,开始的一段,称为起始段(initial segment),长约 15~25μm,通常较树突细,粗细均一,表面光滑,分支较少,无髓鞘包卷。离开胞体一定距离后,有髓鞘包卷,即为有髓神经纤维。轴突末端多呈纤细分支称轴突终未(axon terminal),与其他神经元或效应细胞接触。

轴突表面的细胞膜,称轴膜(axolemma),轴突内的胞质称轴质(axoplasm)或轴浆。轴质内有许多与轴突长袖平行的神经原纤维和细长的线粒体,但无尼氏体和高尔基复合体,因此,轴突内不能合成蛋白质。轴突成分代谢更新以及突触小泡内神经递质,均在胞体内合成,通过轴突内微管、神经丝流向轴突末端。 神经元树突的末端可以接受其他神经传来的信号,并把信号传给神经元,因此是传入神经的末梢。而轴突的分枝可以把神经传给其他神经元或效应器,因此是传出神经的末梢。 电镜下,从轴丘到轴突全长可见有许多纵向平行排列的神经丝和神经微管,以及连续纵行的长管状的滑面内质网和一些多泡体等。在高倍电镜下,还可见在神经丝、神经微管之间均有极微细纤维网络连接,这种横向连接的极细纤维称为微小梁(microtrabecula)起支持作用。轴突末端还有突触小泡。

轴突运输(axonal transport)(神经元的胞体和轴突在结构和功能上是一个整体,神经元代谢活动的物质多在胞体形成,神经元的整体生理活动物质代谢是由轴浆不断流动所实现。 

神经元类型

研究证明:神经元胞质自胞体向轴突远端流动,同时从轴突远端也向胞体流动。这种方向不同、快慢不一的轴质双向流动称为轴突运输。从胞体向轴突远端的运输,由于运输方向与轴质流动的方向一致故称为倾向运输(antrograde transport),这种运输有快慢之分:快速运输,其速度为每天200~500mm,是将神经元胞体合成的神经递质的各类小泡和有关的酶类等经长管状的滑面内质网和沿微管表面流向轴突末端,待神经冲动时释放。

慢速运输也称轴质流动(axoplasmic flow),其速度为每天1~4mm,主要是将神经元胞体合成的蛋白质,不断地向轴突末端流动,以更新轴质的基质、神经丝以及微管等结构蛋白质。逆向运输(retrograde transport)是轴突末端代谢产物和轴突末端通过人胞作用摄取的蛋白质、神经营养因子以及一些小分子物质等由轴突末端运向胞体,运输方向与轴质流动相反,故称为逆向运输,速度为每天l~4mm,这种运输主要是由多泡体实现。多泡体是一个大泡内含许多小泡,小泡内分别含有代谢产物或摄入的神经营养因子。代谢产物被逆向运输至胞体后,经溶酶体的作用,可分解消化更新,神经营养因子到胞体后,可促进神经元的代谢和调节神经元的生理功能。不论是顺向或逆向运输,均由线粒体提供ATP供能所实现。在某种原因而感染时,有些病毒或毒素由逆向运输,转动到神经元的脑体内而致病。轴突运输是神经元内各种细胞器生理功能的重要体现。 轴突的主要功能是将神经冲动由胞体传至其他神经元或效应细胞。轴突传导神经冲动的起始部位,是在轴突的起始段,沿轴膜进行传导。

神经元细胞分类

(一)根据细胞体发出突起的多少,从形态上可以把神经元分为3类

1.假单极神经元

胞体近似圆形,发出一个突起,在离胞体不远处分成两支,一支树突分布到皮肤、肌肉或内脏,另一支轴突进入脊髓或脑。

2.双极神经元

胞体近似梭形,有一个树突和一个轴突,分布在视网膜和前庭神经节。

3.多极神经元

胞体呈多边形,有一个轴突和许多树突,分布最广,脑和脊髓灰质的神经元一般是这类。

(二)根据神经元的机能分类

1.感觉(传入)神经元

接受来自体内外的刺激,将神经冲动传到中枢神经。神经元的末梢,有的呈游离状,有的分化出专门接受特定刺激的细胞或组织。分布于全身。在反射弧中,一般与中间神经元连接。在最简单的反射弧中,如维持骨骼肌紧张性的肌牵张反射,也可直接在中枢内与传出神经元相突触。一般来说,传入神经元的神经纤维,进入中枢神经系统后与其它神经元发生突触联系以辐散为主,即通过轴突末梢的分支与许多神经元建立突触联系,可引起许多神经元同时兴奋或抑制,以扩大影响范围。

2.运动(传出)神经元

神经冲动由胞体经轴突传至末梢,使肌肉收缩或腺体分泌。传出神经纤维末梢分布到骨骼肌组成运动终板;分布到内脏平滑肌和腺上皮时,包绕肌纤维或穿行于腺细胞之间。在反射弧中,一般与中间神经元联系的方式为聚合式,即许多传入神经元和同一个神经元构成突触,使许多不同来源的冲动同时或先后作用于同一个神经元。即为中枢的整合作用,使反应更精确、协调。

3.联络(中间)神经元

接受其他神经元传来的神经冲动,然后再将冲动传递到另一神经元。中间神经元分布在脑和脊髓等中枢神经内。它是三类神经元中数量最多的。其排列方式很复杂,有辐散式、聚合式、链锁状、环状等。神经元间信息传递的接触点是突触。复杂的反射活动是由传入神经元、中间神经元和传出神经元互相借突触连接而成的神经元链。在反射中涉及的中间神经元越多,引起的反射活动越复杂。人类大脑皮质的思维活动就是通过大量中间神经元的极其复杂的反射活动。中间神经元的复杂联系,是神经系统高度复杂化的结构基础。

(三)按神经元轴突的长短

可分为高尔基(Gol-gi)Ⅰ型细胞和高尔基Ⅱ型细胞两种类型。

上一篇

康朗生物开学季|ELISA买五送一

下一篇

细胞学堂 | 293细胞系家族谱系大揭秘

更多资讯

询价列表

暂时没有已询价产品

快捷询价 发送名片
    当你希望让更多商家联系你时,可以勾选后发送询价,平台会将你的询价消息推荐给更多商家。